
MATRIXX Cloud Native Implementation | page 1/6 Copyright © MATRIXX Software, Inc.
All Rights Reserved.

MX091923

The MATRIXX digital monetization solution is a cloud native, real-time monetization
engine delivering industry-compliant rating and charging functionality along with
a rich array of digital monetization capabilities such as subscription management,
event streaming and management, personalization and digital payments.

MATRIXX Cloud Native
Implementation

At its heart is a 3GPP-compliant Online Charging System
(OCS) supporting 2G, 3G and 4G cellular networks, and a
Converged Charging System (CCS) supporting 5G, both
delivered from the same platform.

The MATRIXX solution can be implemented in network
edge, telco cloud, private and public cloud environments.
It is deployed as a cloud native, containerized application,
orchestrated and managed by Kubernetes. It can be
delivered on bare metal or virtualized infrastructure.1

With 5G driving the need for flexible performance
and elastic scalability, cloud native deployments are
becoming the primary choice for most organizations,
supporting:

•	 Platform Abstraction – The ability to take advantage
of the practically-infinite scale of the cloud, or to deploy
within a secure private data center, the cloud native
architecture benefits from the portability and ubiquity
of the Kubernetes ecosystem.

•	 Container-Based Deployments – Easily orchestrated,
fast start-up times and lightweight implementation that
enables high utilization of the underlying hardware.

•	 Loosely-Coupled Microservices – Optimally sized
autonomous business functions that independently scale,
are easily upgraded, ephemeral and easily replaced.

•	 DevOps – Highly-automated orchestration allowing for
continuous integration and delivery.

1 Refer to Cloud Native Infrastructure Requirements for details, page 6

http://matrixx.com

MATRIXX Cloud Native Implementation | page 2/6 Copyright © MATRIXX Software, Inc.
All Rights Reserved.

MX091923

Deployment Benefits Summary
MATRIXX provides market-leading, real-time monetization
and is architected for web scale operations. The
components of the platform are based on a loosely-coupled
processing pipeline where each element can be separately
scaled and tuned for resilience and performance. MATRIXX
and Kubernetes together deliver stateful, cloud native
monetization in a fully containerized environment.

MATRIXX Digital Monetization Solution
Cloud Native Architecture
MATRIXX architectural layers include API gateways,
routing agents, processing logic, in-memory database
nodes and event publishing. Each layer is separately
scalable and can be tuned for the desired level of
resilience. They are enabled by efficient communications
between each node, with data volume reduced by
localized databases and the co-location of critical
business logic.

Kubernetes takes these concepts and applies them to
any cloud environment.

KEY BENEFITS OF THE MATRIXX SOLUTION CLOUD NATIVE DEPLOYMENT

MATRIXX enables a high-performance, consistent and
replicated in-memory database across a cluster of
containers. Typically, containers and microservices imply
a focus on stateless web applications. The deployment of
stateful applications and databases is less straightforward
and requires additional steps to operationalize. Stateful
containers typically require much greater coordination
of cluster management, failover, replication and ordered
upgrades.

MATRIXX is architected for high performance and
high availability. The lightweight and high-performance
software is fully aligned to a microservices environment.

Containers should be lightweight, easily managed and
ephemeral — easily created and destroyed without
consequence. This is all supported by the MATRIXX
solution’s high performance, loose coupling and fully
replicated database. With Kubernetes, MATRIXX
delivers a cloud native, stateful application in a fully
containerized environment.

MATRIXX is deployed on Kubernetes using 100%
native controls without plugins or an external
provisioning overlay. This is made possible by the
microservices design of the platform, even including
the stateful in-memory database components, and
achieved through the use of Deployments and the
Operator Framework.

http://matrixx.com

MATRIXX Cloud Native Implementation | page 3/6 Copyright © MATRIXX Software, Inc.
All Rights Reserved.

MX091923

Figure 1: MATRIXX Digital Monetization Solution Cloud Native Architecture

1.	 Business API Gateway – Provides a secure,
configurable and extensible REST API gateway for
northbound apps and OSS/BSS integrations.

2.	 Network Gateway(s) – Network interaction is handled
through microservices involving HTTP/2, RESTful and
other network protocols including Diameter.

3.	 Inbound Routing – Load balances and routes all
requests to the correct processing pod and manages
all responses to the initiator.

4a.	Rating Processing Logic – Execute the business logic
to process the charging and policy request and create
a response. Rate calculations and policy decisions are
made extremely quickly and efficiently using linear
equations — this MATRIXX technology allows for high
throughput and low latencies regardless of whether
the pricing model is simple or very complex.

4b.	In-Memory Database – Object-oriented database,
optimized specifically for telecom style rating and
charging volumes. The non-locking transaction
model allows multiple reads and updates to the same
objects to occur simultaneously while maintaining full
transactional integrity and highly consistent latency.

5.	 Publishing and Auditing – Reliably publish events to
the event repository, audit files and high volume, low
latency streaming targets.

6.	 Checkpoint Creation – Processes offline transaction
files to periodically recreate a full image of the
database and write checkpoint images to be used
in the case of disaster recovery and cold start.

7.	 Transaction Logs, Event Files, Checkpoints –
Short-term storage of events and to archive
transaction-processing data. The archived data
is used during system start-up.

8.	 Active MQ – Delivers outbound integration to
external services.

9.	 Notifications – Generates templated human-readable
messages and delivers to end-customers via push
notifications, SMS or email.

10.	 Payment Gateway – Connects to various payment
providers to enable real-time purchases, scheduled
payments and threshold-triggered recharges.

11.	 Event Streaming – Sends event stream data,
generated from MATRIXX to consumers, such as
Kafka, Google Pub/Sub and ActiveMQ.

12.	 Event Repository – Long-term storage of events in
a database that is available for API query from self-
care or other systems and used for General Ledger
processing to produce daily summary data.

http://matrixx.com

MATRIXX Cloud Native Implementation | page 4/6 Copyright © MATRIXX Software, Inc.
All Rights Reserved.

MX091923

Deployment
Kubernetes is an open source container orchestration
engine designed to manage reliable, distributed,
containerized applications at scale. The smallest and
simplest object in Kubernetes is a pod, but most
applications are formed of multiple types and instances
of pods. Kubernetes provides various out-of-the-box
controllers to manage different types of pods. MATRIXX

makes extensive use of a Deployment and ReplicaSet
to ensure that for a particular function in the solution a
required number of pods are available at any point. The
Deployment is a controller that also includes support for
rolling upgrades which is important in this context so that
pod version changes are introduced in a managed fashion.

Configuration
Helm is a tool used in cloud native environments to
help manage the complex set of configurations typical
in Kubernetes deployments. It provides a mechanism
for deploying Kubernetes manifest files in a controlled
manner. This includes the ability to upgrade and rollback
an installation. The Kubernetes manifest files are packaged
as a Chart. A Chart packages the manifest files required
for an application but also provides templating to allow
these to be customized for the given deployment.

Helm Charts are used to define a given deployment
sub-domain (sub-domains are how subscriber bases
are scaled in MATRIXX) and processing topology along
with the number of pods for all the stateless pods to
be created under the various Deployment ReplicaSets.
All pods within the reference architecture come with a
Helm Chart along with higher-level items such as engine,
sub-domain and a top-level matrixx chart, allowing
for simple helm install type commands.

By providing a values.yaml file per environment,
Helm makes it very easy to spin up and tear down
various environments such as dev, test, preproduction
and production.

Helm also manages upgrades by specifying container
versions that any given environment should use. When
a new version of a given container is available and is
to be deployed to a given environment, the values.yaml
file is altered to state the new version for that container
and a helm upgrade is performed.

MATRIXX supports the use of Helm for managing various
deployment configurations and performing upgrades.
This simplifies the spinning up of new deployments with
different pod configurations and topology for test as well
as production.

Figure 2: The Role of Helm in Deploying the MATRIXX Solution

http://matrixx.com

MATRIXX Cloud Native Implementation | page 5/6 Copyright © MATRIXX Software, Inc.
All Rights Reserved.

MX091923

CI/CD Pipeline
The move to a cloud native architecture brings
challenges along with many benefits. For example,
the DevOps process is impacted by the increased
complexity of managing several microservices instead
of a singular application. The number of code pipelines
to be managed could grow exponentially. The build
and release process, therefore, has to adapt to manage
dozens of microservices, and the various versions and
compatibilities between them, with a quicker time-to-
market. This makes automation essential.

As containers are immutable, all changes to MATRIXX
are managed as part of an automated CI/CD process,
which allows for complete traceability. MATRIXX
recommends the use of a Git-based and Jenkins
orchestrated pipeline for managing all changes to
production systems via automated test environments.

For example, deploying updated pricing or a new engine
configuration in addition to deploying new software
versions should all be managed via a pipeline to remove
manual errors.

When it comes to the option of continuous deployment
or continuous delivery, a majority of telcos are likely to
practice continuous delivery, and manage their own
testing and production software updates, given the
demands of the environment they operate in.

Allowing multiple vendors to directly change production
software will likely be too risky for most without a robust
coordination process. Telcos will still expect code changes
to be managed and automated all the way into production
via a pipeline which they will expect to own and manage
and which will be utilized across the various cloud native
vendors and applications in their environment.

Figure 3: MATRIXX Reference CI/CD Pipeline

http://matrixx.com

MATRIXX Cloud Native Implementation | page 6/6 Copyright © MATRIXX Software, Inc.
All Rights Reserved.

MX091923

CLOUD NATIVE INFRASTRUCTURE REQUIREMENTS

The following minimum environment configurations are required to run the MATRIXX digital monetization solution:

•	 Kubernetes Distribution – A production-grade, fully
supported Kubernetes distribution for public or private
cloud such as Amazon EKS, Google GKE, Redhat
Openshift or VMware Tanzu Kubernetes Grid.

•	 Worker Nodes – Linux x86 based public or private
cloud or bare metal worker nodes.

•	 Persistent Volumes – For local storage solutions (EBS,
local SSD, etc.), a small space for host OS and container
images is required. For shared storage solutions (EFS,
NAS, NFS/SAN, etc.) MATRIXX is ReadWriteMany (RWX)
and requires fast shared storage for transaction log
files. Standard shared storage is used for archiving
transaction log files, checkpoints and events.

•	 Ingress Controllers/Load Balancers – Production-
grade cloud platform network load balancer for
non-HTTP ingress traffic (such as Diameter) along with
an appropriate application load balancer or separate
ingress controller and network load balancer for HTTP
traffic (5G Service Based Architecture and Business
API Gateway).

•	 Networking – Standard Kubernetes Container Network
Interface for networking. Optionally single root I/O
virtualization (SR-IOV) networking for the processing
pods for improved network performance.

ABOUT MATRIXX

MATRIXX Software delivers a modern converged charging and digital monetization solution proven at scale. Global
operators like Telefónica and Telstra, IoT providers like Tata Communications and network-as-a-service (NaaS) providers
like DISH rely on the platform to overcome the limitations of traditional Business Support Systems (BSS). With MATRIXX,
service providers can rapidly configure, deploy and monetize personalized, innovative offerings. Its cloud native
platform delivers accurate, real-time information that improves customer engagement. MATRIXX enables commercial
innovation and real-time customer experiences that drive revenue and growth opportunities across multiple markets.

matrixx.com

http://matrixx.com
http://matrixx.com

